Basic notions of prosody

Amalia Arvaniti
University of Kent

Aix Summer School on Prosody
5-9 September 2016
What is prosody?

• Umbrella term used to group together a number of phonetic parameters that typically extend over an utterance
 – Pitch (F0)
 – Duration (timing)
 – Amplitude
 – Phonation

• These parameters give rise to a set of phonological phenomena
 – Stress
 – Rhythm and timing
 – Phrasing
 – Intonation
Prosody or suprasegmentals?

- The term *suprasegmentals* has often been used to refer to prosody (e.g. Lehiste 1970)
- It is used as recently as Ladd (2008)
- It suggests that we have a two-layer organization of speech
- Segmentals: vowels and consonants
- Suprasegmentals: stuff that goes above
So what?

- **segmentals**
- **with suprasegmentals on top**
Icing on the cake?

• The view of prosody as suprasegmentals implies that the integrity of segmentals is not compromised by suprasegmentals
• This is how prosody is often taught
• This implies that one can study many facets of speech and language structure without reference to prosody
• Doing so is standard practice in research
• It all lumps together all aspects of suprasegmentals
A better analogy

- Speech is more like a baklava
- It consists of many layers
- Prosody is the syrup that binds it together and turns it into a baklava
- Prosody is essential and unavoidable
Components of prosody

• Stress
• Rhythm & timing
• Phrasing
• Intonation
• These phenomena are largely independent of one another but interact
• The same phonetic parameters, like F0, have several functions at the same time
• They also affect the realization of segments
Some provisos

• Components of prosody share the same basic phonetic parameters; e.g.
 – Stress is manifested in many languages as additional duration and higher amplitude
 – Duration is also used to indicate phrasing

• Phonetic parameters are not used and organized in the same way across all languages; e.g.
 – The difficulty in defining prominence cross-linguistically
 – The role of F0 in Mandarin and English
Provisos continued

• Components of prosody use the same basic **phonetic** parameters that are also used to encode **paralinguistic** information in speech.

• **Linguistic**: systematic & structured; language-specific; categorial; meaningful.

• **Paralinguistic**: more variable; less language-specific; continuous; e.g.
 – The higher the pitch range, the more excited the speaker is (but the essential meaning does not change as the pitch range changes).
STRESS
What is stress?

• We can define stress as relative prominence between constituents

• Stress is what makes some syllables in a word stand out relative to others

• Stress operates both lexically (at the word level) and post-lexically (at the utterance level); e.g.

 banana vs. ripe banana
Stress is relational = syntagmatic/ hierarchical (comes in layers)

It does not make sense to say a syllable is stressed unless it can be compared to another syllable (though in English some syllables are inherently stronger than others)

The relationship of strength among the syllables of a word does not change because of the context in which the word is found

Syllables are designated as strong (s) or weak (w) and grouped in hierarchically structured trees
Some simple representations of stress

The sun is shining

GRID

TREE

The sun is shining
The phonetics of stress

• How stressed syllable stand out is the result of
 – a combination of phonetic parameters; **there is no one phonetic property that gives rise to the percept of stress**; that is, stress is not like, say, nasality which is clearly associated with a lowered velum and nasal resonances.

 – These phonetic parameters are to a large extent **language specific**; therefore, percepts of stress differ by language

 – English [bəˈnænə]/[bəˈnænə] Greek [baˈnana]
Stress and the role of F0

• Early perceptual experiments on English by Dennis Fry (1955, 1958) have show that percepts of stress in ENGLISH change when F0 changes, in word pairs like

protest (N) ~ protést (V)
[ˈproʊtəst] ~ [prəˈtɛst]

• This result has been interpreted as showing that stress is indicated by high or rising pitch
• This is simply a misunderstanding, confounding stress and intonation: stressed syllables often have high or rising pitch but this is not a necessary feature
Stress as localized hyperarticulation

• Ken de Jong (1995): stress as localized hyperarticulation
• In English, stressed syllables are hyperarticulated:
 1. they have more carefully pronounced consonants
 2. they have more peripheral (non-centralized) vowels
 3. 1&2 make stressed syllables longer and often louder
 4. stressed syllables are also docking sites for F0 (pitch) movements (though not all stressed syllables show a pitch movement, and not all pitch movements occur on stressed syllables)

From Lindblom’s H&H theory
(Lindblom 1990)
Linguistic functions of stress

• **Culminative function**: refers to making elements in speech stand out; stress, by definition has culminative function

• **Contrastive function**: refers to changes in meaning as in *protest N vs. protést V*

• **Delimitative function**: refers to the creation of groupings; e.g. in English stressed syllables are typically word-initial; in Finnish this always applies

• Stress can have any of these functions, depending on the language; e.g. Hungarian and Czech vs. English, vs. Greek, Spanish
Stress in other languages

- Stress is manifested in a variety of ways
- In Spanish, Greek and Italian stressed syllables are longer than unstressed syllables, but the difference in duration is not as great as in English
- In Spanish and Greek all five vowels [i e a o u] can appear in both stressed and unstressed syllables; there are only small differences in quality between vowels in stressed and unstressed syllables
An example

Stress in other languages

• Stress is manifested in a variety of ways
• In Spanish, Greek and Italian stressed syllables are longer than unstressed syllables, but the difference in duration is not as great as in English
• In Spanish and Greek all five vowels [i e a o u] can appear in both stressed and unstressed syllables; there are only small differences in quality between vowels in stressed and unstressed syllables
• In Italian some vowels do not appear in unstressed syllables: stressed vowels = [i e ɛ a ɔ o u], unstressed syllables = [i e a o u]
• Other languages, such as French, Korean, Bangla, Japanese, many varieties of Basque, do not reliably distinguish syllables on the basis of stress
• **It is not necessary for a language to have stress**
Repercussions for analysis

• Necessary to question whether a language has stress when analyzing a new language
• Examining both phonetic (acoustic, perceptual, articulatory) and **phonological evidence** is essential
• The use of phonological evidence is often neglected
• Objectively measuring the acoustics of stressed syllables does not reflect native speaker perceptions; e.g.,
 – stress has a higher functional load in Spanish than in English, but Spanish cues to stress are more subtle than those used in English
• Consequences: for field work (language contact) / typology
Some criteria for stress

Phonetic criteria

- In what ways do putatively stressed syllables stand out?
 - Longer duration
 - Higher amplitude
 - Greater **amplitude integral**
 - Hyperarticulation: e.g.
 - full vowel structure
 - spectral tilt
 - consonant quality

- **Native intuitions are crucial**

Phonological criteria

- Can stress distinguish word meaning?
- Lack of lenition and/or presence of fortition
- Different sets of vowels in stressed and unstressed positions
- Do differences consistently correlate with position within a phrase?
STRESS, RHYTHM, AND TIMING
Rhythm and stress

• Phonology: stress is used to create patterns of alternation between strong and weak constituents (syllables, feet, words)
• This alternation is thought to create rhythm
• Adjustments are made to stress patterns to retain eurhythmy, i.e. (relatively) regular alternation between strong and weak constituents
How to achieve eurhythmy in English

Lapse

* * *

* > *

* * *

Beat Addition to remedy the lapse

three red shirts > three red shirts

Clash

* * *

* * *

* * *

sixteen books > sixteen books

Rhythm Rule (Iambic Reversal) to remedy the clash
Some problems with this view

• How does rhythm work in languages like Greek, Spanish or Italian in which such adjustments are not allowed?

• Possible answer relates to tempo: languages have a stressed syllable every 0.5 second or so (Dauer 1983, Tilsen & Arvaniti 2013; Arvaniti 2013)

• How is rhythm created in languages like Korean, Bangla, or French that do not have elements with culminative function?

• It appears that rhythm in those languages works in a similar fashion (cf. Chung & Arvaniti 2013 and Tilsen & Arvaniti 2013 on Korean) except that prominent syllables become so only postlexically (primarily through phrasing and initial strengthening)
In phonetics rhythm has often been equated to timing.

Timing is one element of rhythm, but rhythm and timing are not the same thing.

Rhythm classes:
- stress-timing (English)
- syllable-timing (Spanish, French)
- mora-timing (Japanese)

A lot of research has been devoted (in vain) to finding isochrony: durational adjustments in feet, syllables, moras.

Maybe isochrony is perceptual? (Lehiste 1973, 1977)

Dauer 1983, 1985

• No syllable-timing because it is not viable
• Stress salience creates a continuum from least- to most-stress based (NOT from stress- to syllable-timing)

• Eight criteria for stress salience
 – Phonetic: e.g. durational differences between stressed and unstressed syllables
 – Phonological: e.g. is the set of vowels used in stressed and unstressed syllables the same?

• Problem: assumes that there exist such ‘objective’ criteria
Rhythm metrics

• In Ramus, Nespor & Mehler (1999), Dauer’s eight criteria were reduced to two:
 – Syllable complexity
 – Vowel reduction (phonologized only)

• It was hypothesized that these two factors can be quantified and give us the distinction between stress-, syllable-, and mora-timing

• The typology is said to be the basis of acquisition and to be used for adult speech processing
Popular rhythm metrics

Ramus et al. (1999):
\[\Delta C = \text{the standard deviation of consonantal intervals} \]
\[%V = \text{the percentage of vocalic stretches} \]

Grabe & Low (2002): Pairwise Variability Indices

\[rPVI = \sum_{k=1}^{m-1} \frac{|d_k - d_{k+1}|}{(m - 1)} \]
Metric of consonantal variability

\[nPVI = 100 \times \left[\sum_{k=1}^{m-1} \frac{|d_k - d_{k+1}|}{(d_k + d_{k+1})/2} \right]^{(m-1)} \]
Metric of vocalic variability

Dellwo (2006): VarcoC and VarcoV (SD/Mean)
Rhythm classification with metrics?

If metrics work,
• most languages should be classifiable (G&L classified just 5/18 languages)
• most studies beyond “the usual suspects” have yielded very poor results
Cross-metric comparisons

Based on Arvaniti, 2012, *JPhon*

Amalia Arvaniti, AixPros 2016
Rhythm classes, production and perception

• Metrics don’t work in production
• They mostly capture syllable structure (Renwick 2012; Horton & Arvaniti 2013)
• Recent studies also show that languages are not discriminated in perception by rhythm class
 – Listeners cannot reliably perceive differences in rhythm (Arvaniti 2012b)
 – Discrimination is based primarily on speaking rate (Arvaniti & Rodriquez 2013)
 – Impoverished signals (like [sasasa]) are not ecologically valid (Arvaniti 2012b; Arvaniti & Rodriquez 2013)
Rhythm and timing

• Neither the production or the perception of **timing** helped with rhythm classification
• No convincing evidence for rhythmic classes either in production or in perception
• Keep timing as a term that refers to the durational structure of utterances; this structure depends on stress patterns, phrasing and language-specific patterns to do with segment duration and coordination, realization of changes in speaking rate and so on (Arvaniti 2009)
• Define rhythm as an abstract structure based on prominence and grouping
• When we produce running speech, we do not just put words one after another

• Rather, we group them into hierarchical constituents: prosodic words, phrases, and utterances (simplifying a great deal)

• These constituents are not the same as syntactic constituents, speech → [this is the cat] [that caught the rat] [that stole the cheese]...
syntax → this is [the cat that caught [the rat that stole] the cheese]]...
Sandhi and phrasing

• Many phonological phenomena (assimilations, lenitions, elisions, etc.) including stress rules like the Rhythm Rule are affected by phrasing: they may occur only across or within certain phrasal constituents

• Thus, sandhi changes of this sort act as cues to prosodic phrasing and help listeners parse the segmental string

• Flapping in AE applies within a foot but not across feet
 – Don’t hit it to Joey! - the /t/ of “hit” is flapped ([ɾ]) in American English
 – Don’t hit! It’s Joey’s turn! - the same /t/ is not flapped
Sandhi and levels of phrasing

• Sandhi has been often used as a prosodic constituency diagnostic (e.g. Nespor & Vogel 1986)

• Many sandhi phenomena turned out to be
 – Affected by intonation rather than phrasing
 • Deletion/coalescence in hiatus is blocked in Greek if the second word is in focus (Baltazani 2006)
 – Variable
 • Alveolar stop assimilation in English (bad guys does not turn into baguys; Nolan 1992)
Circles = tongue-palate contact; dots = lack of contact; in *late calls* [t] is not deleted as phonology predicts: it is reduced and overlaps with the following [k]
Sandhi and levels of phrasing

• Caution is needed when considering sandhi as a criterion
Additional cues to phrasing

• Intonational melodies apply over phrasal constituents (thereby providing listeners with more cues to the presence of phrasal boundaries)
• At prosodic boundaries, short silences can and may be inserted
• The higher the constituent, the stronger the boundary is felt to be and the more likely it is for a pause to be inserted
• Left edges of phrasal constituents in particular show articulatory strengthening
Representation of phrasing

• There are many models of representation:
 – bracketed grids, binary trees, n-ary trees

• For an analysis the *minimum* needed is
 – To know (or decide) if the language has stress
 – To know (or decide) on levels of phrasing

• For English, Beckman & Pierrehumbert (1986) recognize
 – The intermediate phrase [ip]
 • akin to the phonological phrase of other models
 – The intonational phrase [IP]
An example from MAE ToBI

[Diagram of linguistic structures]

design improvements and a schedule
design improvements and a schedule
An example from Polish

Intonational Phrase IP

IPs

| ip

ωw ωw ωs

σs σw σs σw σw σw σs σw

ˈp a ɲɛ d ɔk ˈt ɔʐɛ w a ˈb u d a

Mister Doctor Wabuda!

Phoneme Tier

Data from Arvaniti et al., Phonetica, to appear
Intonation: come back at 11:00!